We present the specification, estimation and testing of an econometric model intended to explain and forecast individual returns of securities listed on the Brazilian stock market. The model's explanatory variables include macroeconomic, fundamental and behavioural variables sampled at different frequencies. The model uses the MIDAS regression methodology, which supports estimation of regressions with variables sampled at different frequencies. The sample includes non-financial institutions listed in the Brazilian stock exchange from 2010 to 2016. The results indicate that the model is robust in explaining and forecasting quarterly returns of individual shares listed on that market.


Akaike, H. (1974), “A new look at the statistical model identification”. IEEE Transactions on Automatic Control. 19(6):716-723. doi:10.1109/TAC.1974.1100705.

_________. (1976), “Canonical Correlation Analysis of Time Series and the Use of an Information Criterion”. Mathematics in Science and Engineering. 126:27-96. doi:10.1016/S0076-5392(08)60869-3.

Andreou, E.(2016). “On the use of high frequency measures of volatility in MIDAS regressions”. Journal of Econometrics, 193(2): 367–389.doi:10.1016/j.jeconom.2016.04.012.

Andreou, E.; Ghysels, E; Kourtellos, A. (2010), “Regression models with mixed sampling frequencies”. Journal of Econometrics. 158(2):246-261. doi:10.1016/j.jeconom.2010.01.004.

_______________________________. (2013), “Should Macroeconomic Forecasters Use Daily Financial Data and How?” Journal of Business & Economic Statistics. 31(2):240-251. doi:10.1080/07350015.2013.767199.

Antonakakis, N.; Gupta, R.; Tiwari, A.K. (2017), Has the correlation of inflation and stock prices changed in the United States over the last two centuries? Research in International Business and Finance. 42:1-8. doi:10.1016/j.ribaf.2017.04.005

Baltagi, B.H. (2005), “Econometric Analysis of panel data”. 3. ed. Chichester: John Wiley&Sons.

Banz, R.W. (1981), “The relationship between return and market value of common stocks”. Journal of Financial Economics. 9(1):3-18. doi:10.1016/0304-405X(81)90018-0.

Brown, G.W.; Cliff, M.T. (2005), “Investor sentiment and asset valuation”. The Journal of Business. 78(2):405-440. doi:10.1086/427633.

Campbell, J.Y.; Thompson, S.B. (2008), “Predicting excess stock returns out of sample: can anything beat the historical average?” Review of Financial Studies. 21(4):1509–1531. doi:10.1093/rfs/hhm055

Chambers, M.J. (2016), “The estimation of continuous time models with mixed frequency data”. Journal of Econometrics. 193(2):390-404. doi:10.1016/j.jeconom.2016.04.013.

Chen, P.; Zhang, G. (2007), “How do accounting variables explain stock price movements? Theory and evidence”. Journal of Accounting and Economics. 43(2-3):219–244. doi:10.1016/j.jacceco.2007.01.001.

Christou, C.; Cunado, J.; Gupta, R.; Hassapis, C. (2017), “Economic policy uncertainty and stock market returns in Pacific Rim countries: Evidence based on a Bayesian panel VAR model”. Journal of Multinational Financial Management. 40:92-102. doi:10.1016/j.mulfin.2017.03.001.

Diebold, F.X.; Mariano, R.S. (1995), “Comparing Predictive Accuracy”. Journal of Business and Economic Statistics. 13:253-265. doi:10.1198/073500102753410444.

Fama, E.F.; French, K.R. (1992), “The cross-section of expected stock returns”. Journal of Finance. 47(2):427-465. doi:10.2307/2329112.

___________________. (1993), “Common risk factors in the returns on stocks and bonds”. Journal of Financial Economics. 33(1):3-56. doi:10.1016/0304-405X(93)90023-5.

Ghysels, E.; Santa-Clara, P; Valkanov, R. (2004), “The MIDAS touch: Mixed data sampling regression models”. Cirano.Série scientifique.

________________________________. (2005), “There is a risk-return tradeoff after all”. Journal of Financial Economics. 76(3):509–548. doi:10.1016/j.jfineco.2004.03.008.

Ghysels, E.; Sinko, A.; Valkanov, R. (2007), “Midas regressions: Further results and new directions”. Econometric Reviews. 26(1):53–90. doi:10.1080/07474930600972467.

Hadhri, S; Ftiti, Z. (2017), “Stock return predictability in emerging markets: Does the choice of predictors and models matter across countries?” Research in International Business and Finance.42:39–60. doi:10.1016/j.ribaf.2017.04.057.

Hou, K.; Xue, C.; Zhang, L. (2015), “Digesting anomalies: An investment approach”. Review of Financial Studies. 28(3):650-705. doi:10.1093/rfs/hhu068.

Hannan, E.J.; Quinn, B.G. (1979), “The Determination of the Order of an Autoregression”. Journal of the Royal Statistical Society. 41(2):190-195. Doi:

Jegadeesh, N.; Titman, S. (1993), “Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency”. The Journal of Finance. 48(1):65-91. doi:10.1111/j.1540-6261.1993.tb04702.x.

__________________. (2001), “Profitability of Momentum Strategies: An Evaluation of Alternative Explanations”. The Journal of Finance. 56(2):699-720. doi:10.1111/0022-1082.00342.

Kahneman, D.; Tversky, A. (1979), “Prospect Theory: An analysis of decision under risk”. Econometrica. 47(2):263-291. doi:10.2307/1914185.

Keim, D.B. (1983), “Size-related anomalies and stock return seasonality: Further empirical evidence”. Journal of Financial Economics. 12(1):13-32. doi:10.1016/0304-405X(83)90025-9.

Kuzin, V.; Marcellino, M; Schumacher, C. (2011). “MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area”. International Journal of Forecasting. 27(2):529-542. doi:10.1016/j.ijforecast.2010.02.006.

Li, X.; Shang, W.; Wang, S.; Ma, J. (2015). “A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data”. Electronic Commerce Research and Applications, 14(2):112–125.doi: 10.1016/j.elerap.2015.01.001.

Liston, D.P. (2016), “Sin stock returns and investor sentiment”. The Quarterly Review of Economics and Finance. 59:63-70. doi:10.1016/j.qref.2015.08.004.

Machado, M.A.V.; Medeiros, O.R. (2011), “Modelos de precificação de ativos e o efeito liquidez: evidências empíricas no mercado acionário brasileiro”. Revista Brasileira de Finanças. 9(3):383-412.

Marcellino, M.; Schumacher, C.C. (2010), “Factor-MIDAS for now-and forecasting with ragged-edge data: A model comparison for German GDP”. Oxford Bulletin of Economics and Statistics. 72(4):518-550. doi:10.1111/j.1468-0084.2010.00591.x.

Martins, O.S.; Paulo, E.; Albuquerque, P.H.M. (2013), “Negociação com informação privilegiada e retorno das ações na BM&FBovespa”. RAE. 53(4):350-362.

Markowitz, H. (1952), “Portfolio Selection”. The Journal of Finance. 7(1):77-91.

Mussa, A.; Famá, R., Santos, J.O. (2012). “A adição do fator de risco momento ao modelo de precificação de ativos dos três fatores de Fama & French aplicado ao mercado acionário brasileiro”. REGE. 19(3):431-447. doi:10.5700/issn.2177-8736.rege.2012.49925.

Myers, S.C. (1984), “The capital structure puzzle”. Journal of Finance. 39(3):575-592. doi:10.1111/j.1540-6261.1984.tb03646.x

Pan, Z.; Wang, Q.; Wang, Y.; Yang, L.(2018). “Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model”. Energy Economics. 72:177–187.doi: /10.1016/j.eneco.2018.04.008.

Rapach, D.E.; Strauss, J; Zhou, G.Z. (2010), “Out-of-sample equity premium prediction: Combination forecasts and links to the real economy”. Review of Financial Studies. 23(2): 821–862. doi:0.1093/rfs/hhp063.

Rouwenhorst, G.K. (1998), “International Momentum Strategies”. The Journal of Finance. 53(1):267-284. 1998. doi:10.1111/0022-1082.95722.

Schwarz, G. (1978), “Estimating the Dimension of a Model”. Annals of Statistics. 6(2):461-464.

Welch, I.; Goyal, A. (2008). “A comprehensive look at the empirical performance of equity premium prediction”. Review of Financial Studies. 21:1455–1508. doi:10.1093/rfs/hhm014.

Wink Jr., M.V.; Pereira, P.L.V. (2011) “Modeling and Forecasting of Realized Volatility: Evidence from Brazil”. Brazilian Review of Econometrics, 31(2):315–337.doi: 10.12660/bre.v31n22011.4056.

Yoshinaga, C.E.; Castro Jr. F.H.F. (2012), “The Relationship between Market Sentiment Index and Stock Rates of Return: a Panel Data Analysis”. BAR. 9(2):189-210.

Zhao, X.; Han, M.; Ding, L.; Calin, A.C.(2018). “Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA”. Environmental Science and Pollution Research. 25(3):2899–2910.doi: 10.1007/s11356-017-0642-6.